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Bit Error Rate Comparison Statistics and
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Binomial) Experiments
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Abstract—Inverse, or negative binomial, sampling is often used
when the observation of interest occurs extremely infrequently.
As this is the case in bit error rate (BER) simulations, es-
pecially in high signal-to-noise ratio cases, negative binomial
sampling can be advantageously employed in a computationally
economic fashion to compare bit error rates between different
systems. When the results of two negative binomial sampling tests
are compared, point estimates and interval estimates quantify
the performance relationship between the results of the tests.
This paper derives a new, optimal, logarithmically-symmetric
confidence interval estimator for the ratio of BER estimates
derived from two negative binomial tests. In addition, a three-
sided hypothesis test with a single significance level is derived
to quantify the confidence of the relationship between the two
systems. Low-BER approximations for the confidence interval
and decision thresholds are derived based on the F-distribution.
The approximation is shown to work with BERs as high as 10−2.
An example inspired by bit interleaved coded modulation shows
how the technique can be used to reduce simulation time by an
order of magnitude and facilitate straightforward interpretation
and comparison between different systems. Negative binomial
sampling is recommended for comparison experiments where
BER is the key metric.

Index Terms—Inverse sampling, negative binomial, confidence
interval, bit error rate

I. INTRODUCTION

Because the bit error rate (BER) is perhaps the most
important figure of merit in a digital communication system,
it is necessary to rigorously analyze the methods through
which this statistic is calculated and how this statistic is
employed to make quantitative comparisons between compet-
ing communications strategies. Computer simulation is often
used to estimate the BERs of two systems. The systems
are then compared based on these estimates. For complex
communication systems, the simulations can take days or even
weeks, especially for extremely small BERs.

The problem addressed in this paper is illustrated by the
simulation results presented in Fig. 1. Here, the simulated BER
performance of two systems, labeled “System 0” and “System
1”, and based on binomial sampling involving 100,000,000 bits
at each SNR level is shown. The two systems are described
in Section VII. The two BER curves are relatively smooth
until Eb/N0 = 15 and 16 dB, the points at which a relatively
small number of errors occur. At Eb/N0 = 15 dB it appears
System 1 is slightly better than System 0 but the situation
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Figure 1. Illustration of BER simulation conditions when it is desirable to
have statistical tests to compare performance of two different systems. Due to
natural variation inherent in numerical simulations, BER estimates are often
not “smooth” curves, particularly under conditions where very few errors are
present. The difficult points in this plot at Eb/N0 = 15, 16 dB have BERs
that require significant simulation time in order to estimate performance.

is reversed at Eb/N0 = 16 dB. To illustrate this point, the
ratio of the BER estimates is plotted in the inset. The ratio
is approximately 1 for 10 ≤ Eb/N0 ≤ 14 dB, less than 1
for Eb/N0 = 15 dB, and greater than 1 for Eb/N0 = 16 dB.
The natural conclusion is that the two systems have equivalent
BER performance and that the differences at Eb/N0 = 15 and
16 dB are small enough to be attributed to the variance of the
estimates, characteristic of Monte Carlo simulations. (And this
would be the correct conclusion.) However, if the variations in
the ratio p̂1/p̂0 could be quantified in a statistical sense, then
the confidence associated with making claims such as “System
0 and System 1 have equivalent BERs” or “System 0 has a
lower BER than System 1” can be computed and reported with
the simulation results. We will also show that the statistical
characterization of the random variable p̂1/p̂0 resulting from
a negative binomial test requires much shorter simulations
to make such claims than would otherwise be required to
satisfy subjective “smoothness” criteria often selected when
examining experimental BER curves.

As outlined in our recent paper [1], BER experiments
based on negative binomial (NB) sampling, also known as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2016.2541140

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

inverse sampling, have the potential to increase the trans-
parency under which different simulations are run. While
not increasing simulation time on average, single NB ex-
periments provide exact analyses for confidence intervals (in
particular, the logarithmically-centered confidence interval)
and improvements for test design and interpretation. Perhaps
most importantly, use of NB sampling removes the researcher
from the test procedure.

Building significantly on the results for single NB BER
experiments, this paper addresses how to statistically compare
the results of two NB BER experiments:

• Point estimates and interval estimates quantify the re-
lationship and uncertainty between two different BER
estimates.

• Hypothesis tests provide decision criteria to indicate
statistically significant differences between two BER tests
and to order systems according to performance.

This paper establishes both a computationally economic
framework to conduct comparative BER tests and quantitative
statistical interpretation of the results. The contributions are
as follows. First, we derive a new optimal, logarithmically-
symmetric confidence interval estimator for the ratio of two
BER estimates obtained using an NB test. Second, we develop
a three-sided hypothesis test, with a single significance level,
to quantify the confidence of the relationship between the two
systems. Third, low-BER approximations for the confidence
interval and decision thresholds are derived based on the F-
distribution. Simulation results show the approximations to
hold for a BER as high as 10−2. Fourth, a rule of thumb is
presented to aid the researcher in performing computationally
economic NB BER tests.

These contributions apply to any communications system
whose output errors are well-modeled, or approximately well-
modeled, by a Bernoulli process. Care must be taken when
attempting to apply these results to situations where the
Bernoulli assumption may not hold, such as coded systems
where decoder errors occur in bursts or time-varying channels.

II. PERFORMANCE CONSIDERATIONS FOR COMPARATIVE
TESTS USING TRADITIONAL BINOMIAL TESTS AND

NEGATIVE BINOMIAL TESTS

For many communications systems, it is assumed that bit
errors are independent from other bit errors, resulting in a
Bernoulli process (we know that this is often not strictly
true, but we often rely on this assumption when we report
and discuss performance - models with memory can simulate
certain communication strategies with greater fidelity but often
result in additional complexity in selection of the memory
model [2]).

When comparing the BERs of two different communication
systems, we have a choice to either simulate for a fixed number
of Bernoulli trials (binomial) or to simulate the experiment
until a certain number of errors, r, are reached (NB). In
the binomial case, a fixed number of trials, N , is set for
the systems to be compared at a particular condition, e.g. a
signal-to-noise ratio. For a given condition, the two systems
will have BERs given by p0 and p1. If we desire a certain

number of errors on average (though this is not guaranteed in
the binomial case), an approximate formula, using Jeruchim’s
guideline, r = 10 [3], might be to set

N = max
(
r

p0
,
r

p1

)
. (1)

Thus, for a comparison of two different systems under the
same condition and where each system takes unit time to
decode one bit, the total binomial simulation time, TB , is 2N .
If the systems are run in parallel, the total time will be N . In
practice we often set N to be some integer power of 10.

If we instead run our simulation until we achieve a certain
number of errors, then this procedure is a NB sampling
experiment. In this procedure the total number of trials for
a single condition will be X + r, where X is the NB
random variable and r is the specified number of errors, or
the stopping criterion for the test. While there are multiple
ways of parameterizing a NB random variable, we will use a
probability mass function based on the formula

Pr(X = x; r, p) =

(
r + x− 1

x

)
pr(1− p)x, (2)

where p is the underlying BER which must lie on the interval
(0, 1) [4]. This parametrization is useful because it has support
for the random variable X on the interval [0,∞). For this
parameterization of the NB random variable the expected value
is E{X + r} = r/p, the maximum likelihood (ML) estimator
is p̂ = r/(x+r), and the minimum variance unbiased (MVU)
estimator is p̊ = (r − 1)/(x + r − 1). These estimators are
point estimates that can be used to characterize the results of
individual NB experiments. To quantify the reliability of these
estimates in the context of NB BER simulations, we prefer the
use of the MVU point estimator and logarithmic confidence
interval, as outlined in our previous work [1].

In contrast to the fixed simulation time for the binomial
case, the total simulation time for the NB experiment, TNB ,
is not fixed. However, we can calculate the expected value for
the total time, TNB as

E[TNB ] =
r

p0
+

r

p1
. (3)

For the case when p0 6= p1, E[TNB ] < 2N . Under these
common experimental conditions, on average it will take less
time to simulate the NB version of the comparison experiment.
If the two systems are run in parallel the total time can be
estimated by max (r/p0, r/p1) = N . This implies that the
equivalent binomial test could be run in the same amount
of time with known p0 and p1, but in a binomial test the
number of errors is not guaranteed and often p0 and p1 are
not known exactly. Thus, in general for unknown BERs, when
a certain number of errors are desired, less total simulation
computations will be performed in the NB case than in the
binomial case.

In addition to the improved performance of the NB against
the binomial sampling under these conditions, we want to
emphasize that if an experimenter decides that he has not
run enough trials in a traditional binomial test and restarts his
simulation and combines the previous data with the simulation
data from the restart, this type of experiment is neither
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binomial nor NB - it is a hybrid experiment and would
have an alternative probability mass function that includes the
probabilistic behavior of the experimenter. From this point of
view, NB sampling effectively removes the experimenter from
influencing the type of test being conducted if insufficient
errors are produced in a binomial-type experiment. Because
of this experimental design consideration, and the fact that, on
average, the NB test will produce a desired number of errors
reliably and with less simulation time than the binomial test,
this again recommends the NB experimental procedure over
the binomial one. Consequently, the following analysis will
restrict itself to the NB sampling scheme for BER simulations
and comparisons.

III. STATISTICAL COMPARISONS OF NEGATIVE BINOMIAL
EXPERIMENTAL OUTCOMES

Once the experiment of generating bit errors using a NB
method is performed to compare the performance of two com-
peting schemes under the same conditions, how to analyze the
outcomes is important. In general, there are two approaches:
simple difference and the ratio1. The simple difference is
straightforward in that it captures the estimated difference
between the two BERs; however, it does not scale well as a
comparative performance metric over the orders of magnitude
common in BER simulations. The estimated ratio of two BERs
captures how well one algorithm performs against another
algorithm and does so stably over the wide range of BERs; it
has the drawback that it loses the absolute nature that the
simple difference contains. For both simple difference and
ratios, point estimators and interval estimators can be used.
The advantage of interval estimators is that by their length
they also provide a measure of the confidence one has in
their ability to cover the true parameter. In this section, point
estimators and interval estimators are derived for cases relevant
to BER comparisons.

A. General point estimators and interval estimators for neg-
ative binomial comparisons

NB sampling has been used extensively for biological and
epidemiological studies [5], [6]. Because of this, there are
already a number of point estimators available for the simple
difference and ratio cases. The simple difference estimator
formulas are generally straightforward as far as combining
the NB ML and MVU estimators in a linear fashion [7].
Different forms of the NB ML estimators and MVU estimators
are combined to form ML and MVU ratio estimators [8].
These point estimators are found in Table II. There are many
ways of defining confidence intervals for the simple difference
and ratio with no clear, optimal choice. Some recent papers
compare these confidence intervals for simple difference [9]
and ratios [10]. Additionally, alternative parametrizations [11]
are often used to model highly dispersed data which perform
a fitting to both NB parameters.

For the case of BER testing, more information is known
about the underlying error probabilities due to the fact that

1The term “relative difference” is often employed in the statistics literature.

p → 0 for most BER testing scenarios and the number of
desired errors for the two conditions can be set a priori so that
r = r0 = r1. These conditions allow for some simplifications
and approximations that can yield specialized estimators and,
importantly, an optimal set of confidence intervals for the ratio.

B. Asymptotic ratio as F-distributed random variable

A ratio of NB random variables can be successfully approx-
imated by a simple analytical expression when the underlying
probabilities are small. Consider two NB random variables,
X0 and X1, with BER probability parameters p0 → 0 and
p1 → 0 and stopping conditions r0 and r1, respectively. As
outlined by Bennett [12] and alternatively shown in Casella,
Berger [13]

2p0X0 ∼ χ2
2r0 2p1X1 ∼ χ2

2r1 . (4)

Because the scaled ratio of two independent chi-squared
random variables is an F-distributed random variable, we have

Y =
2p1X1/(2r1)

2p0X0/(2r0)
∼ F (2r1, 2r0) (5)

where F (a, b) means an F-distributed random variable with
parameters a and b. The corresponding probability density
function is

f(y; a, b) =
Γ
(
a+b
2

)
aa/2bb/2

Γ (a/2) Γ (b/2)

ya/2−1

(b+ ay)
(a+b)/2

. (6)

Simplifying (5) shows that

Y =

(
p1r0
p0r1

)
X1

X0
. (7)

That is, a scaled version of the the experimental outcome
X1/X0 has an F-distribution with parameters 2r1 and 2r0.

C. Logarithmically symmetric confidence interval for ratio

Because of (5), it is immediately apparent that logarithmi-
cally symmetric confidence intervals can be constructed when
r0 = r1 = r. This follows because the F-distributed random
variable, Y , under this condition can be written as

lnY = ln(p1X1)− ln(p0X0) (8)

This expression is logarithmically symmetric when these chi-
squared random variables are equivalently distributed and
independent, which must be the case when we choose r =
r0 = r1. This is unlike the simple difference case where the
estimators for the terms in the simple difference are themselves
dependent on the underlying probabilities. Because of this
logarithmic symmetry, if the confidence interval with 1 − α
confidence level is defined with equal probability above and
below the desired midpoint of the interval (in a Clopper-
Pearson sense [14]), then the bounds of the interval can be
obtained as follows. The significance level, α, represents the
probability found in the tails outside of the confidence interval.
The logarithmically-symmetric confidence interval estimator is
given by [(

p1
p0

)
l

,

(
p1
p0

)
u

]
. (9)
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Table I
LOWER AND UPPER BOUNDS FOR LOGARITHMICALLY-CENTERED

CLOPPER-PEARSON CONFIDENCE INTERVALS FOR RATIO UNDER THE
CONDITIONS r = r0 = r1 AND p→ 0

r (1− α) = 0.90 (1− α) = 0.95 (1− α) = 0.99

2 [0.1565, 6.3882] [0.1041, 9.6045] [0.0432, 23.1545]
5 [0.3358, 2.9782] [0.2690, 3.7168] [0.1710, 5.8467]

10 [0.4708, 2.1242] [0.4058, 2.4645] [0.3014, 3.3178]
11 [0.4883, 2.0478] [0.4241, 2.3579] [0.3200, 3.1246]
20 [0.5907, 1.6928] [0.5333, 1.8752] [0.4356, 2.2958]
50 [0.7185, 1.3917] [0.6742, 1.4833] [0.5949, 1.6809]

100 [0.7920, 1.2626] [0.7573, 1.3204] [0.6937, 1.4416]

The lower bound of the confidence interval is obtained by first
finding yl, defined by

α

2
= Pr (Y ≤ yl) = F (yl; 2r, 2r) (10)

where F (y; a, b) the cumulative distribution function for the F-
distribution and is given by integration of the density function
(6). The lower bound is thus

yl = F−1
(α

2
; 2r, 2r

)
. (11)

From (7) we have, for r0 = r1,

p1
p0

=
X0

X1
Y. (12)

Substituting gives the desired result:(
p1
p0

)
l

=
X0

X1
yl =

X0

X1
F−1

(α
2

; 2r, 2r
)
. (13)

The upper bound of the confidence interval is obtained in a
similar manner. First, we define yu using

1− α

2
= Pr (Y ≤ yu) . (14)

Solving for yu and applying the relationship (12), the upper
bound may be expressed as(

p1
p0

)
u

=
X0

X1
F−1

(
1− α

2
; 2r, 2r

)
(15)

=
X0/X1

F−1
(
α
2 ; 2r, 2r

) . (16)

This is a particularly clean result for determining the con-
fidence interval. Because we have shown that the logarithmic
interval is logarithmically symmetric, this is also the shortest
logarithmic confidence interval that can be constructed for
a given 1 − α confidence level. Figure 2 illustrates these
confidence intervals as a function of the number of errors. As
the number of errors increases (as can be determined by the
experimenter), it is evident that the confidence interval will be
significantly shorter. A useful compilation of the logarithmic
confidence interval bounds for values of r that would be
common in BER comparison experiments is found in Table
I.
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Figure 2. Upper and lower confidence interval bounds for logarithmically-
centered ratio confidence intervals using the F-distribution approximation for
different values of r0 = r1.

D. Median estimator

The unique nature of the log-symmetric ratio also introduces
the possibility of using the upper and lower bound expressions
as an additional estimator. We define a median estimator in the
following fashion:(

p1
p0

)
median

=
X0

X1
F−1

(
1

2
; 2r, 2r

)
=
X0

X1
(17)

This is definitely a biased estimator but has the attractive
property that the median of this estimator will indeed converge
to the desired ratio. Because of the heavy right tail of the F-
distribution, however, we expect this in general to be biased
above the actual value of the ratio. An additional use of this
estimator for plotting is that it will be found at the center of
the logarithmically-centered confidence interval described in
the previous section.

E. Summary of comparative estimators

In this section a number of estimators have been described
in the literature and logarithmic confidence interval bounds and
a median estimator have been derived in this section based on
the chi-square approximation to the NB when p → 0. These
point estimators and confidence interval bounds are shown in
Table II.

IV. ANSWERS TO THE QUESTION: WHICH SYSTEM IS
BETTER?

With the point and interval estimators for the ratio p1/p0
established, we now move to the question of ordering. Based
on the estimate of the ratio p1/p0, a researcher often wants to
know if the simulation results establish the superiority (p1 <
p0), equivalence (p0 = p1), or inferiority (p1 > p0) of the two
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Table II
COMPARATIVE NEGATIVE BINOMIAL POINT ESTIMATORS AND THEIR ASSOCIATED FORMULAS WHEN r = r0 = r1 .

Point Estimate Formula

ML simple difference [7] ∆̂ = p̂0 − p̂1 = r
x0+r

− r
x1+r

MVU simple difference [7] ∆̊ = p̊0 − p̊1 = r−1
x0+r−1

− r−1
x1+r−1

ML ratio [8]
(
p1
p0

)
ML

= r+x0
r+x1

MVU ratio [8]
(
p1
p0

)
MVU

=
(r−1)(x0+r)
r(r+x1−1)

Median ratio
(
p1
p0

)
median

= x0
x1

Log-confidence interval lower bound
(
p1
p0

)
l

= x0
x1
F−1

(
α
2

; 2r, 2r
)

Log-confidence interval upper bound
(
p1
p0

)
u

= x0
x1
F−1

(
1− α

2
; 2r, 2r

)

systems. The question is best formulated as a hypothesis test
involving the following three hypotheses:

H+ : p1 < p0

H0 : p1 = p0

H− : p1 > p0

(18)

Because there are three hypotheses, there are a number of
ways to formulate a hypothesis test to answer the question
[15], [16]. The approach outlined by Goeman, Solari and
Stijnen [16] seems best for our application. Here Finner’s
and Strassburger’s partition principle [17] is used to define
a composite test for the three hypotheses: a one-sided test is
used for H+ (the “null” hypothesis is H0 ∪H−) and for H−
(the “null” hypothesis is H0∪H+) whereas a two-sided test is
used for H0. By the partition principle, the significance level
(the probability of an incorrect rejection) of the composite test
is guaranteed to be α if the significance level of of each of
the constituent tests is set to α. Doing so defines the following
test:

Reject H+ if X1/X0 ≤ t1−α
Reject H− if X1/X0 ≥ tα
Reject H0 if X1/X0 > t1−α/2 or X1/X0 < tα/2

(19)

where tq is the q-th quartile of the distribution of X1/X0

under the null hypothesis. The q-th quartile is defined by

q = Pr (X1/X0 ≤ tq) = F (tq; 2r, 2r) (20)

where F (tq; 2r, 2r) is the cumulative distribution function
for the F-distribution. The rejection test for H0 is equivalent
to “inverting” the confidence interval estimator described in
Section III-C.

With three hypotheses, we use somewhat more precise
language than that often used with two hypotheses. Because a
statistical test such as this one can either reject or fail to reject

tα t1− α

Reject H_ 

Reject H+ 

Reject H0 

t1− α / 2tα / 2

Reject H0 

1 X 1/X 0

Reject H_ and H0 

(superiority) 

Reject H+ and H0 

(inferiority) 

Reject H+ and H_ 

(equivalence) 

Figure 3. A graphical representation of the test (19).

H0 (but never “prove” H0 true), the language of the test is
based on the rejection criteria.

A graphical representation of the test is illustrated in Fig-
ure 3. The graphical representation makes clear how the test
may be used to answer the question. This answer may be
summarized as follows:

Decision =


p1 < p0 if X1/X0 > t1−α
p1 = p0 if tα/2 ≤ X1/X0 ≤ t1−α/2
p1 > p0 if X1/X0 < tα.

(21)

Note that there are two regions where an answer is not given.
The first is tα/2 ≤ X1/X0 < tα, where only H+ is rejected. In
this case the answer is “non-superiority” in the sense that the
hypothesis p1 < p0 is rejected, but the hypotheses p0 = p1 and
p1 > p0 are not rejected. The second case, t1−α < X1/X0 ≤
t1−α/2, is similar: the answer is “non-inferiority” and means
that the hypothesis p1 > p0 is rejected, but the hypotheses
p1 = p0 and p1 < p0 are not rejected.

The behavior of the decision regions is illustrated by the
numerical examples in Figures 4 and 5. In Figure 4, the
significance level is fixed at α = 0.05. The decision thresholds
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Figure 4. A graphical representation of the test (19) for α = 0.05 and r = 11
(top), r = 101 (bottom).

are computed for two values of the stopping criterion: r = 11
and r = 101. The plots show for fixed α the width of
the “non-inferiority” and “non-superiority” decision regions
shrink. This makes intuitive sense because decisions about
superiority, equivalence, and inferiority become more certain
as the number of observed errors increases.

In Figure 5, the stopping criteria r is fixed at 11 and the
decision thresholds are computed for three significance levels
α = 0.10, 0.05, 0.01. The plots show that the rejection regions
for H− and H+ get longer with decreasing α whereas the
rejection regions for H0 get shorter for with decreasing α. This
behavior is expected because tα decreases and t1−α increases
as α decreases. The same behaviors are observed with tα/2 and
t1−α/2, although these two terms change with α at a slightly
different rate with decreasing α, hence the slight decreases
in the widths of the “non-inferiority” and “non-superiority”
decision regions.

A list of the decision thresholds used by (21) for various
values of stopping criterion r and confidence level 1 − α is
given in Table III. It is noted that because of the "inverse"
relationship between the confidence interval and the two-
sided hypothesis the bounds of the confidence intervals in
Table I are the same values for the thresholds tα/2 and t1−α/2
in Table III. These decision thresholds are logarithmically
symmetric because they originate from the ratio of the chi-
squared random variables shown in (5).

V. SIMULATION

To test the effectiveness of the theoretical approximations
outlined above, the different point estimators and interval
estimators were simulated on a computer for a variety of
situations of interest in BER comparison studies.

The performance of the ML, median, and MVU ratio point
esimators was assessed by comparing scenarios where p0 >
p1 and p0 < p1. The stopping criteria r was varied through
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Figure 5. A graphical representation of the test (19) for r = 11 and α = 0.10
(top), α = 0.05 (middle), α = 0.01 (bottom).

approximately logarithmically-distributed integer values from
1 to 1000. For each r, two comparative tests were performed:

1) One NB random variable was simulated with p0 = 10−7

and a second NB random variable was simulated with
p1 = 10−6.

2) One NB random variable was simulated with p0 = 10−7

and a second NB random variable was simulated with
p1 = 10−8.

For each r, 100,000 trials were conducted and the mean,
median, and standard deviation of the different ratio point
estimators were calculated. The results for the ML point
estimator are shown in Fig. 6. The results for the median and
MVU point estimators are shown in Figs. 7 and 8.

To test the performance of the asymptotic logarithmically-
centric confidence interval (and equivalently the performance
of the two-sided hypothesis test) an additional set of sim-
ulations were employed. From the preceding analysis, we
understand from the asymptotic analysis that these ratio test
relationships will certainly be accurate at very low BERs when
pi → 0. How these confidence interval estimators perform at
high BERs can also be important.

To assess this, NB variables at varying BERs were simulated
and confidence intervals were calculated so the estimated
coverage probabilities could be compared quantitatively with
the theoretically predicted coverage probabilities. This was
performed for three different stopping criteria, r = 1, 11, and
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Table III
DECISION THRESHOLDS FOR THE TEST (21) FOR VARIOUS VALUES OF

STOPPING CRITERION r AND CONFIDENCE LEVEL 1− α.

(1− α) = 0.90

r tα/2 tα t1−α t1−α/2

2 0.1565 0.2435 4.1072 6.3882
5 0.3358 0.4306 2.3226 2.9782

10 0.4708 0.5575 1.7938 2.1242
11 0.4883 0.5734 1.7440 2.0478
20 0.5907 0.6642 1.5056 1.6928
50 0.7185 0.7731 1.2934 1.3917

100 0.7920 0.8339 1.1991 1.2626

(1− α) = 0.95

r tα/2 tα t1−α t1−α/2

2 0.1041 0.1565 6.3882 9.6045
5 0.2690 0.3358 2.9782 3.7168

10 0.4058 0.4708 2.1242 2.4645
11 0.4241 0.4883 2.0478 2.3579
20 0.5333 0.5907 1.6928 1.8752
50 0.6742 0.7185 1.3917 1.4833

100 0.7573 0.7920 1.2626 1.3204

(1− α) = 0.99

r tα/2 tα t1−α t1−α/2

2 0.0432 0.0626 15.9770 23.1545
5 0.1710 0.2062 4.8491 5.8467

10 0.3014 0.3404 2.9377 3.3178
11 0.3200 0.3591 2.7849 3.1246
20 0.4356 0.4730 2.1142 2.2958
50 0.5949 0.6259 1.5977 1.6809

100 0.6937 0.7188 1.3912 1.4416
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Figure 6. Simulated performance of ML ratio estimator for p0 = 10−7.
Solid lines represent the calculated means for the estimators. Dashed lines
represent the calculated medians for the estimators. The triangle symbols
represent points ± 1 standard deviation from the means.
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Figure 7. Simulated performance of median ratio estimator for p0 = 10−7.
Solid lines represent the calculated means for the estimators. Dashed lines
represent the calculated medians for the estimators. The triangle symbols
represent points ± 1 standard deviation from the means.
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Figure 8. Simulated performance of MVU ratio estimator for p0 = 10−7.
Solid lines represent the calculated means for the estimators. Dashed lines
represent the calculated medians for the estimators. The triangle symbols
represent points ± 1 standard deviation from the means.

100. The condition r = 11 was chosen to match criteria for the
single parameter estimation case [1]. The BERs for two NB
variables were set equal, p0 = p1, and were logarithmically
spaced from 10−5 to 3 × 10−2. At each stopping condition
and BER, 106 trials of the two NB variables were conducted.
Lower and upper bound criteria for the confidence intervals
at three confidence levels 1− α = 0.90, 0.95, and 0.99 were
used to determine if the calculated confidence interval from
the two NB variable outcomes contained the true BER ratio
p1/p0 = 1. The coverage probabilities were then calculated
for each pair of stopping condition and BER and plotted as
shown in Fig. 9.
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VI. DISCUSSION

A. Comparison of ratio point estimators

The ratio point estimator simulations reveal the nature of
each of the different types of estimators. For the ML estimator,
the mean is consistently biased above the actual ratio. As r
increases, the ML estimator significantly improves. The ML
estimator also performs very well as a median estimator under
conditions relevant for BER testing. This is because of the
approximations that can be made in the small probability case:

Pr
(
X0 + r

X1 + r
<
p1
p0

)
≈ Pr

(
X0

X1
<
p1
p0

)
≈ Pr

(
χ2
0p1
χ2
1p0

<
p1
p0

)
= Pr

(
χ2
0 < χ2

1

)
=

1

2
.

(22)

The chi-squared random variables have the same number of
degrees of freedom and so are equivalent - one variable is
equally likely to be greater or smaller than the other so the
probability is split evenly between the estimate for p1/p0 being
greater or less than the true value.

Similar to the ML estimator, but derived directly from the
F-distribution approximation to the ratio of the NB random
variables, the median estimator clearly has its median at the
a priori ratio. The performance of the ML estimator and the
median estimator are almost identical because r is negligible
in the ML formula for the large X0 and X1 expected when
p→ 0.

The MVU estimator is clearly the best choice if a mean
of the ratio estimates is used. It works as designed and its
mean clearly estimates correctly the a priori ratio. Its median
is below the mean, but that is expected because of the skew
inherent in the ratio distribution. The MVU estimator would
be the preferred statistic to report for the estimated ratio in a
bit error test because it is unbiased.

B. Performance of logarithmically-centered confidence inter-
val estimator

From the simulation data comparing logarithmically-
centered confidence intervals for a fixed number of errors,
we see that the coverage probabilities achieve their targeted
values using the F-distribution ratio approximation for p→ 0
as expected. For the condition r = 1 the asymptotic confidence
intervals are already almost accurate to their desired coverage
probabilities below the 10−2 BER level. The confidence in-
tervals increase in accuracy as the confidence level increases.
Additionally, while the approximation is accurate at the r = 1
level (when the distributions are actually geometric random
variables), the accuracy of the approximation increases as the
number of errors, r increases, which will be typical of real
comparisons. Because the two-sided hypothesis test uses the
same bounds as the confidence intervals due to their "inverse"
relationship, this also validates our proposed hypothesis testing
under these conditions. For almost all digital communication
systems, the BERs of interest are those that are below the
level 10−3. This provides the rational justification for the use
of the F-distribution approximation for most of the digital
communication systems of practical interest.

When comparing the estimated BERs using NB sampling,
logarithmically-centered confidence intervals for the BER
ratios are relatively easy to construct and to visualize on
logarithmic plots and thus can be used in comparisons of
estimated BER probabilities. Based on the confidence interval
and three-sided hypothesis test presented in this work, this
naturally results in the following rule of thumb:

• If r0 = r1 = 11, a ratio of BERs of approximately 2:1 is
required to be statistically significant at 90% confidence.

While this paper has dealt with the case when r0 = r1,
which is the most common case when the researcher has
control of the simulation parameters, the F-distribution ap-
proximation analysis can be useful for the case when r0 6= r1.
However, under those changed conditions, the distribution of
Y will no longer be logarithmically symmetric and so other
criteria would be needed to establish additional parameters to
select a confidence interval. This demonstrates that the analysis
for BER simulations where control of r0 and r1 is possible
(the focus of this work) is particularly clean and yields useful
estimators and interval analysis that can be readily applied to
comparison tests where the metric of interest is the BER.

VII. EXAMPLES

As an example of the forgoing analysis, we consider using
computer simulation to assess the bit error performance for
different bit-to-constellation point mappings for non-binary
modulations. Bit decisions are made based on bit-level log-
likelihood ratios (LLRs) as computed for bit interleaved coded
modulation (BICM) [18], [19]. Normally BICM employs an
error correction code operating on the bit level LLRs. Unfor-
tunately, decoder errors tend to occur in bursts and therefore
do not conform to the statistical model assumed in this paper.
For example the decoder for an LDPC code with block size
n outputs the correct codeword (a block of n bits with zero
errors) or a block of n bits with usually more than n/10 errors
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when the decoder reaches the maximum number of allowed
iterations. Here we omit the code (but retain the bit-level
interleaver) to illustrate the application of the principles.

a) Example 1: For the first example, we use 16-APSK
modulation, defined in the DVB-S2 standard [20], and a
length-100,000 S-random interleaver [21]. System “0” is de-
fined by the bit-to-constellation point mappings defined in
[20]. The main feature of this mapping is its Gray code
property. For the first set of simulations, system “1” is defined
by a different Gray code for the bit-to-constellation point
mapping. We expect the BER performance of the two systems
to be identical because the Gray code property is preserved.
To begin, we performed the “traditional” binomial test using
N = 100,000,000 bits for each value of Eb/N0. The MVU
point estimates are shown in Fig. 1 and discussed in the
introduction. The points of interest are Eb/N0 = 15 and 16
dB, where small variations suggest somewhat conflicting con-
clusions. Furthermore, the confidence intervals associated with
these point estimates have different lengths, an undesirable
property [1].

Next, the NB test with r = 11 was used to estimate the
BER. The MVU point estimates for p are plotted in Fig. 10.
With a relatively small number of errors, it is hard to draw
any firm conclusions from a plot such as this one. However, a
plot of the BER ratio estimate tends to reveal more. The log-
confidence intervals for the ratio for this simulation are plotted
in Fig. 11. For each value of Eb/N0, three logarithmically-
centered confidence intervals (for increasing confidence levels)
are shown. The confidence interval covers the true ratio with
probability 1 − α. Each of the intervals inclues x0/x1 = 1
and this suggests the BERs of the two systems are equivalent.
[This will be made more precise below in the discussion about
the decisions from the hypothesis test (21).] Also included is
the plot is the median point estimate (see Table II). By design,
the confidence intervals are logarithmically-centered about the
median point estimates. From Table I, we see that the 90%
confidence interval extends from approximately one-half the
point estimate to twice the point estimate. In other words,
if the 90% confidence interval covers unity, then we are 90%
confident that the two systems are equivalent. This observation
may be “inverted” by placing two horizontal lines, one at 2
and the other at 1/2 as shown in the figure, and drawing
the same qualified conclusion for equivalency if the median
point estimate lies between the two lines. This illustrates a
simple rule-of-thumb with the median estimator. Even though
the BER curves of Fig. 10 are not smooth, the relatively quick
NB experiment for r = 11 (the simulation time was 4% of
that required for binomial test) and the rule-of-thumb for the
point estimate of the ratio allows the researcher to reach a
quick initial conclusion regarding equivalence.

More formal decisions about equivalence may be drawn
from the decision rule (21) and its illustration in Fig. 5. Using
the thresholds corresponding to r = 11 in Table III, the
decision regarding the relationship between the two systems
is “equivalence” with significance levels 90%, 95% and 99%.

For comparison, the NB test with r = 101 was also run for
the two systems. The MVU point estimates for p are plotted
in Fig. 12. Here the BER curves are quite a bit smoother than
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Figure 10. The MVU estimates of p resulting from the negative binomial
test with r = 11 as found in Example 1.
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Figure 11. The log-confidence intervals for negative binomial test with r =
11 for Example 1 for 1−α = 0.90, 0.95, and 0.99. The dashed lines define
the quick rule-of-thumb described in the text.

the curves in Fig. 10 and provide a more visually pleasing
case for equivalence. The confidence intervals for the BER
estimate ratios are plotted in Fig. 13. The confidence intervals
are much shorter than their counterparts in Fig. 11. The con-
fidence intervals all cover x0/x1 = 1, suggesting equivalence.
But application of the decision rule(21) produces the results
shown in Table IV. The decisions are as expected except for
Eb/N0 = 12− 14 dB for 90% confidence. That this might be
the case could be inferred from the 90% confidence intervals
in Fig. 13: they barely cover x0/x1 = 1 for Eb/N0 = 12−14
dB. In any event, the simulation time for this experiment was
41% of that required for the binomial test.

b) Example 2: As a second example, a random permuta-
tion of the bit-to-constellation point mapping in the DVB-S2
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Figure 12. The MVU estimates of p resulting from the negative binomial
test with r = 101 as found in Example 1.
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Figure 13. The log-confidence intervals for negative binomial test with r =
101 for Example 1 for 1− α = 0.90, 0.95, and 0.99.

Table IV
DECISIONS, IN THE SENSE OF (21) AND FIGURE 3, FOR EXAMPLE 1 WITH

r = 101 FOR THREE DIFFERENT CONFIDENCE LEVELS.

Eb/N0 Decision Decision Decision
(dB) (1− α) = 0.90 (1− α) = 0.95 (1− α) = 0.99

10 equivalence equivalence equivalence
11 equivalence equivalence equivalence
12 non-inferiority equivalence equivalence
13 non-inferiority equivalence equivalence
14 non-inferiority equivalence equivalence
15 equivalence equivalence equivalence
16 equivalence equivalence equivalence
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Figure 14. The MVU estimates of p resulting from the negative binomial
test with r = 11 as found in Example 2.

standard was used to define System 1. One expects the BER for
System 1 to be higher (worse) than that of System 0 because
the Gray code property of the mapping no longer exists. A plot
of the simulated BER using Monte Carlo simulations based on
the negative binomial test using r = 11 is shown in Figure 14.
This plot seems to confirm the belief that System 1 is inferior
to System 0, but it is difficult to be too certain. As before, the
situation becomes a little more clear when examining the ratio
x0/x1. Confidence intervals and the median point estimates
are plotted in Fig. 15. The horizontal lines defining the rule-
of-thumb for equivalence are also shown. The rule of thumb
suggests that with 90% confidence, equivalence is rejected for
Eb/N0 = 10− 13 dB but not rejected for Eb/N0 = 14− 16.
With reference to the decision thresholds illustrated in Figure 5
and using the thresholds corresponding to r = 11 in Table III,
the decisions for each value of Eb/N0 and for three different
confidence levels are summarized in Table V. For the 90%
and 95% confidence levels, these results show that System 1 is
inferior to System 0 for Eb/N0 = 10−13 dB, but equivalent to
System 0 for Eb/N0 = 14−16. For the higher confidence level
of 99%, the conclusion is the same except for Eb/N0 = 11
dB. Given our experienced intuition about how these systems
behave, this is probably a good indicator that the simulation
for Eb/N0 = 11 dB needs to be examined in greater detail.

In any event, it is important to note that the simulation
time required to produce the data in Figures 14 and 15 and
in Table V was only 3% of the simulation time required to
produce the “smooth” curve (corresponding to the binomial
test) in Figure 1. This is less than the 4% reported in the first
simulation of Example 1 because in this example the perfor-
mance of System 1 has a slightly higher BER, information
that may not be known a priori in many experiments.

The NB test for r = 101 for this example was also run.
A plot of the MVU point estimates for the BERs is given
in Fig. 16 and the usual information about the ratio x0/x1
is shown in Fig. 17. The BER curve in Fig. 16 is much
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Figure 15. The log-confidence intervals for negative binomial test with r =
11 for Example 2 for 1− α = 0.90, 0.95, and 0.99.

Table V
DECISIONS, IN THE SENSE OF (21) AND FIGURE 3, FOR EXAMPLE 2 FOR

THREE DIFFERENT CONFIDENCE LEVELS.

Eb/N0 Decision Decision Decision
(dB) (1− α) = 0.90 (1− α) = 0.95 (1− α) = 0.99

10 inferiority inferiority inferiority
11 inferiority inferiority equivalence
12 inferiority inferiority inferiority
13 inferiority inferiority inferiority
14 equivalence equivalence equivalence
15 equivalence equivalence equivalence
16 equivalence equivalence equivalence

more smooth than its counterpart in Fig. 14 and makes it
more clear that System 1 is inferior to System 0. Both the
interval and point estimates for x0/x1 in Fig. 17 confirm this.
Application of the decision rule of (21) decides System 1
is inferior to System 0 with confidence levels if 90%, 95%
and 99%. These relatively certain results were achieved in
a simulation run requiring only 28% of the computer time
required by the binomial test. Again, this is less computer
time required than the 41% reported in the second simulation
of Example 1 because of the increased BER of System 1.

VIII. CONCLUSION

NB sampling is a powerful technique for estimating the
probability of rare events without prior knowledge of the
order of magnitude of the probability of occurrence. It is thus
ideally suited for BER tests, especially when paired with point
estimates and logarithmically-centered interval estimates of the
bit error probabilities [1]. It effectively removes the researcher
from making a priori judgments about the underlying proba-
bilities in their experiments.

Given that a NB experiment can be performed to com-
pare two competing communication schemes, in this paper
important point estimate statistics were outlined to compare
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Figure 16. The MVU estimates of p resulting from the negative binomial
test with r = 101 as found in Example 2.
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Figure 17. The log-confidence intervals for negative binomial test with r =
101 for Example 2 for 1− α = 0.90, 0.95, and 0.99.

the performance of the schemes. Their performance was
simulated and explained. For most cases, the MVU ratio
estimate is preferred because it is an unbiased point estimator
(though in situations were the median is used, other statistics
may be preferable). Additionally, through the F-distribution
approximation using the chi-squared approximation of the
NB, a new logarithmically-centered ratio confidence interval
was presented with optimal length properties. This confidence
interval can and should be used when presenting data about
comparison experiments between NB tests. A simple rule of
thumb was introduced that can guide researchers when making
initial judgments about the results of their experiments.

This paper expands the knowledge base necessary for
performing comparative statistical tests of BER simulations
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using NB sampling. Because of the significant advantages
in simulation time, experiment design and interpretation, and
simple construction of confidence intervals, it is hoped that
the NB approach will be more generally adopted to increase
the clarity and rigor of the communications literature.
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